A Prototype File Protocol for Application Data Sets Based on HDF

Kent E. Eschenberg, Ph.D.

U.S. Army Engineer Research and Development Center Major Shared Resource Center, Vicksburg, MS kee@erdc.hpc.mil

Mike Folk, Ph.D.

National Center for Supercomputer Applications, University of Illinois at Urbana-Campaign mfolk@ncsa.uiuc.edu

Summary

The Unstructured HDF (UHDF) file protocol is a layer of software between an application and the HDF5 file protocol that adds:

- Support for timevarying data
- Support for unstructured data sets
- Metadata that uniquely identifies each object
- Metadata about the data

Application

UHDF

HDF

Native Files

Why HDF?

The "Hierarchical Data Format", Version 5, is based on earlier versions developed at NCSA over many years.

- Its generic with support for grouping and many data types
- Flexible access and storage methods
- Support for many platforms with binary conversion
- Designed for large HPC data sets and I/O needs
- Used on many large projects including ASCI

Organization

- An hierarchy of objects
- Each object can be a data array or a group of objects
- Modest amounts of data can be attached to any object as attributes
- A data array can be of many types (int, float, double, strings, etc.)

Remaining Needs

- Storage for time-varying and unstructured data
- Unique identification of each object
- A standard storage and API for these additional features

Application Data Sets

NASA Computer Graphics World June 2001

Basic Types

- Structured
- Unstructured

Structured

- 2D or 3D arrays
- Number of nodes along X is the same everywhere
- Likewise for Y and (if 3D) for Z

Example

- Structured 3D array
- Node data records velocity

Unstructured

- 1D array of cells
- Cell types include
 - o point, line
 - o triangle, quad
 - o tetrahedron
 - o hexahedron

of Neuro Imaging
National Institute of Mental Health
Computer Graphics World
February 2001

Example

- Unstructured cells
- Cell data records tissue loss due to schizophrenia

Hierarchy of Data Set Types

Hierarchy of Data Set Types (cont.)

Grid (mesh) data types

Hierarchy of Data Set Types (cont.)

Node and cell data types

Basic UHDF Approach

UHDF organizes the information into 4 sections:

- (1) General Metadata (an HDF5 group object)
 - About data source
 - About previous postprocessing
 - About this file
 - Notes
- (2) <u>Datamap Metadata</u> (an HDF5 group object)
 - Collects objects into streams
 - Identifies role of object (vertices, node data, etc.)
 - Stores hints (ex: min/max values)
 - Includes list of times for which object is stored

Basic UHDF Approach (cont.)

- (3) Static Data Object (an HDF5 group object)
 - Any object that is time invarient
- (4) Dynamic Data (a series of HDF5 group objs)
 - One per time step
 - Each contains all objects defined for that time
 - Objects can be defined for some times and not others

Basic UHDF Approach (cont.)

Data Streams

Data streams, in effect, combine multiple files into one. Each stream has its own form, vertices, data, time steps.

Proposed Project Goals

- Refine design with input from potential users
- Map information structures of common packages
 VTK, EnSight, etc.) to UHDF structures
- Create UHDF library
- Create APIs for C, C++, Fortran
- Create readers for AVS, EnSight, VTK, OpenDX
- Create utilities than can convert between UHDF files and those of AVS, EnSight, VTK, OpenDX
- Create documentation, tutorials

How to Get Involved

Contact the authors of this paper

